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Discussion 6: RTL Synthesis with Synopsys Design Compiler

© 2019 Oscar Castaiieda (oc66@cornell.edu) and Christoph Studer (studer@cornell.edu)

¢ You will learn how to synthesize an RTL Verilog model using Synopsys Design Compiler

* You will generate timing, area, and power estimates for the synthesized design

In this tutorial, you will learn how to use Synopsys Design Compiler (DC) to synthesize a digital circuit
that has been described at the register-transfer-level (RTL) using a hardware description language (HDL).
As learned in the previous tutorial, an RTL description of your hardware greatly simplifies digital VLSI
design. Take, for example, the adder module, Add.v that we used in the previous tutorial. In order to
describe an addition operation, you simply had to use the addition + operator, without (i) having to think
the adder type you would like to use (ripple carry adder, carry skip adder, tree adder, etc.) or (ii) writing
your adder in terms of logic gates (e.g., using INVs, NANDs, NORs, XORs, etc.).

However, as you have learned in this class, implementing a real VLSI design involves multiple steps.
First, you need to come up with a design and describe it using a gate-level schematic. Second, you have
to create standard-cells for the used logic gates. Third, you have to size the individual standard cells to
optimize the circuit for timing, area, or power specifications. Fortunately, with commercial standard cell
libraries, the cells have been properly designed and characterized (in terms of timing, area, and power),
which enables the synthesis tool to automatically create a circuit that meets the desired specifications. In
addition, the synthesis tool also generates area, delay, and power estimates for your final circuit. It is
important to note that, after synthesis, only the standard cells to be used (and their sizing) are known.
However, they have not been placed and routed. Hence, the characteristics of your final layout may vary
from the ones reported by synthesis. Other computer-aided-design (CAD) tools exist to automatically
resize, place, and route (connect) the standard cells. Such tools also generate more accurate estimates of
timing, area, and power. This tutorial, however, will only focus on synthesis.

1 The Synthesis Process
In Synopsys DC, the synthesis procedure involves three main steps, which are described next:

¢ Analysis: In this step, your RTL HDL code is converted into an intermediate representation that is
stored in a design library. Once you have added a module into the design library, other designs can
refer to it, instantiate such module, and connect to it.

¢ Elaboration: In this step, a design from the design library is loaded into the Synopsys DC program
memory. In case your design instantiates other designs, these will be brought into the memory as
well. In this step, it is important to note that you can overwrite the default value of the parameters
in your RTL code. In such case, the design name will change to specify the new parameter value.
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If we take our Verilog adder source code as an example, you could elaborate the RegisteredAdd.v
module with DATA_WIDTH=16. In this case, the design in Synopsys DC will be assigned the internal
name RegisteredAdd DATA_WIDTH16. If you do not specify any value for the DATA_WIDTH parameter,
then your design in Synopsys DC will simply be named RegisteredAdd, and it will use the default
parameter value of 12 for the DATA_WIDTH parameter.

¢ Compilation: In this step, the analyzed and elaborated design will be mapped to the available
standard cells (with appropriate sizes to meet your constraints). During compilation, Synopsys
DC starts by mapping high-level descriptions (e.g., the addition + operator and the behavioral
description of the flip-flop FF.v module) into generic logic. Then, the design tool proceeds to apply
Boolean logic optimization. Finally, the circuit gets mapped into the available standard cells. The
synthesis tool tries to optimize your design by using the best possible available logic gates (e.g., a
full-adder cell). At the end, design rules (such as fanout, capacitive load, etc.) are checked to see
whether there are violations (which are then fixed). During the entire process, Synopsys DC will
be trying to meet the timing constraints that you define. After that, the tool will perform an area
recovery step, where it tries to reduce the circuit’s area without creating additional timing violations.

2 Starting Synopsys DC

Student Activity 1: Downloading the Files

For this tutorial, you need to download the ece5746-syn.zip file available on Canvas. Unzip
it in your local computer. Copy the syn directory into the vip-brg server and place it within
the tutorial directory from the previous discussion. Make sure that you have placed the syn
directory in the same level where the src, tb, matlab, and modelsim directories are. Also, make
sure that the .synopsys_dc.setup file is within the syn directory. If it is not there, use the mv
command to rename the synopsys_dc.setup file (note that this last file does not have a period
at the start). You can do so with the following command in the vip-brg server:

mv synopsys._dc.setup .synopsys.dc.setup

Also, load the Synopsys DC program by executing the following command:

module load synopsys-dc-2016.12

You should add this last command to your .bashrc file, just like we did in the previous
tutorial.

Let us now start Synopsys DC. In the vip-brg server, change directory to the syn folder that you just set
up, and enter the following command:

dc_shell-xg-t -output_log file dc_syn.log

This will start Synopsys DC, which will continuously write to a log file dc_syn.log that contains every-
thing that happens while using Synopsys DC. Note that inside the syn folder, thereis a . synopsys_dc.setup
file. This file will always be executed by Synopsys DC at start-up. In our case, this file simply sources
the syn/scripts/syn_setup.tcl script, which is loading the standard cell library files (so that you do
not have to do this manually). For this tutorial, we use the Synopsys Armenia Educational Department
(SAED) 90 nm library. Note that this is a standard-cell library designed only for educational purposes —
You cannot really fabricate an integrated circuit with it. If our project is successful, we will fabricate our
circuit in a 65 nm technology which you cannot access as it requires signing a non-disclosure agreement.
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3 Synthesis with Synopsys DC

3.1 Analysis

Let us analyze the flip-flop FF.v module using Synopsys DC. This is accomplished with the command:
analyze -library work -format verilog ../src/FF.v
With this analyze command, the -1ibrary argument specifies the design library to which the design
will be added. In this case, we are using a design library called work. The -format argument indicates the
HDL being used. We use verilog to indicate that the source code is written in Verilog. If you are using
System Verilog or VHDL, then you have to use sverilog or vhdl for the -format argument, respectively.

Student Activity 2: Analyzing the Rest of Your Adder Design

Use the analyze command to analyze the other two modules required for your design. Do not
analyze the testbench tb/RegisteredAdd_TB.v file! The testbench is only used in simulation to
check that your circuit is working properly (and that is why it gets compiled when working with
ModelSim), but it is not intended to be part of our circuit (which is why we will not synthesize
it in Synopsys DC). Also, the testbench cannot be synthesized anyway...

3.2 Elaboration

We have now finished the analysis step. It is time to move on to the elaboration step. Elaborate your
top-module design, by entering the following command in the Synopsys DC shell:

elaborate RegisteredAdd -library work

With this command, you have elaborated the RegisteredAdd module from the work design library
using the default value of 12 for the DATA_WIDTH parameter. You can verify this by reading carefully
through the messages that Synopsys DC printed on the shell. While reading these messages, also note that
there is a message that reads “Inferred memory devices in process,” after which a table appears. This table
summarizes that the FF.v file was synthesized into a flip-flop with asynchronous reset (AR). You should
always read these messages to verify that your memory elements got correctly inferred as the device you
intended them to be; e.g., make sure that Synopsys DC infers a flip-flop (and not a latch) whenever you
wanted to have a flip-flop; the same applies to asynchronous reset. We recommend always using flip-flops
with asynchronous reset.

Now, you can list the available designs by typing the following command in the Synopsys DC shell:

list_designs

This command will print all the designs that are currently in the program’s memory (i.e., all the designs
that have been elaborated). Note that, as expected, the RegisteredAdd design is there, but there are some
others as well. Remember that the elaboration step also elaborates all the other designs that are used by
your top-level module, and this is why we can see the Add and FF designs here as well. Note that each
design (except the top-level one) is followed by the value used for their DATA_WIDTH parameter.

Student Activity 3: Elaborating a 16-bit Adder

With the previous elaborate command, you elaborated a 12-bit adder. However, we would
like to synthesize a 16-bit adder. Instead of going back to the source Verilog file and changing
the default value for the DATA_WIDTH parameter, you could also use the following command to
overwrite this parameter:

elaborate RegisteredAdd -library work -param DATA_WIDTH=>16
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Execute the 1ist_designs command again. How is the list different now? How can you
differentiate between the 12-bit and 16-bit versions of the RegisteredAdd design?

You may have noticed that the output of the 1ist_designs command printed out an asterisk (*) next
to one of the designs. This asterisk marks the currently selected design that will be synthesized once
you go into the compilation step. So, before going on, let us make sure that the 16-bit RegisteredAdd
design is the current design by typing the following command into the shell:

current_design RegisteredAdd_DATA_WIDTH16

3.3 Constraints Definition

We are almost ready to compile your design. We just need to define some constraints first. We will start by
creating a clock object in Synopsys DC. This is done with the following command:

create_clock Clk CI -period 6.0

With this command, we have created a clock on the port C1k_CI of our RegisteredAdd design, with a
period of 6.0 ns. Note that the command does not specify the time units; these are defined by the technology
library being used. For the SAED 90 nm library, the time unit is indeed ns. To make our clock more realistic,
we will now define the clock signal’s transition (rise and fall) times. We will set both transitions times to
be 200ps with the following command:

set_clock_transition 0.2 [get_clocks Clk CI]

The get_clocks Clk_CI part of the command is just recovering the clock objects that are associated
with the C1k_CI pin.

Similarly to the input delay that we specified in ModelSim, we have to tell Synopsys DC that the
changes at the input signals will be delayed with respect to the clock signal’s rising edge, as to not violate
the hold condition of the flip-flops that register the circuit’s inputs. Note that, in practice, part of this input
delay will be introduced by (contamination and propagation) delays at the circuitry generating the inputs
to your circuit. Let us set an input delay of 200ps on all the input pins (except on the C1k_CI pin) with
respect to the C1k_CI clock, by issuing the following command:

set_input_delay 0.2 -clock Clk CI [remove from collection [all_inputs] [get_ports Clk_CI]]

Here, [remove_from_collection [all_inputs] [get_ports Clk_CI]] is getting a list with all the
circuit inputs and removing from it the C1k_CI input, so we apply the constraint on all remaining inputs.

Finally, we will define a driver for our circuit’s inputs and a capacitive load for its outputs (why are we
doing this?) using the following commands:

set_driving cell -library saed90nm_typ -1lib_cell INVX4 -pin ZN [all_inputs]

set_load 0.01 [all_outputs]

The first command will set attributes from the output port of a cell in the standard-cell library to the
input ports of your circuit, effectively considering that all of your circuit’s inputs are being driven by
such cell. Here, we will take the output port ZN of the INVX4 component in the saed90nm_typ library. The
second command will set a capacitive load of 0.01 pF on every output, where the capacitance unit is given
by the technology library used.

3.4 Compilation

After defining all the constraints for your design, we are finally ready to compile it! In Synopsys DC,
compilation is started by executing the compile ultra command. However, this command has many
different flags that you can use according to your design’s needs. Let us take a look at some of these flags
before compiling our design.
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Student Activity 4: Reading the Manual of compile ultra

To know and understand all the different flags available for the compile_ultra command, you
should read its manual! To do so, just run the following command in the Synopsys DC shell:

man compile_ultra

In the output of this command, you will see several flags that might sound familiar (e.g.,
-scan, -retime, and -gate_clock). In this tutorial, we will only use the -no_autoungroup flag.
Make sure you understand what this flag is doing.

Remember: You can use the man command to read the manual for any Synopsys DC command; this

is super helpful to understand what each command and its different options do!

Now that we understand what the -no_autoungroup flag is doing, start your design’s compilation by
executing the following command in the Synopsys DC shell:

compile_ultra -no_autoungroup

As we are using a very relaxed timing constraint of 6 ns, this compilation step will not be that exciting.
However, later in the tutorial you will synthesize your design for tighter timing constraints, in which case
you will see how Synopsys DC will be optimizing your design to reduce the worst negative slack until it
reaches a value of Ons. You will also note that, besides the delay optimization stage, there are stages for
optimizing the area and leakage power of your design as well.

Once the compilation is finished, we can check our design’s consistency with the command:

check_design

In this case, our design is so simple that there are no warnings. You should always run this command
for every design you synthesize: You must ensure that there are no errors and that you can explain all the
warnings so that they are safe to ignore.

4 Estimating a Circuit’s Timing, Area, and Power with Synopsys DC

By now, your circuit has been correctly synthesized. It is now time to inspect the results you got by
checking your design’s timing, area, and power. Keep in mind that, up to here, your design has not been
placed and routed. Hence, these numbers are just approximations as you have not connected the standard
cells; Remember that wiring has a significant impact on your design’s delay, area, and power.

4.1 Timing Reports

We will first start by reporting the setup checks for our design, with the following command:
report_timing -max_paths 5 > ./reports/timing max.rpt

This will report the 5 most critical paths in your design (in terms of the setup condition) and write
the report to a file named timing max.rpt in the syn/reports directory. Go ahead and take a look at this
report: You can see how Synopsys DC details each one of the most critical paths, indicating the specific
cells and ports through which the path goes, the delay added by each one of these cells, and even if the
transition happening at each node in the critical path is rising (r) or falling (f). Also note that each critical
path is actually considering two paths: There is one path for the signal that is reaching the input port of
the flip-flop, and one path for the clock signal reaching that same flip-flop. As you can see, the flip-flop’s
setup time is subtracted from the latter, instead of being added to the former.

The difference between the clock signal’s arrival time (called data_required_time in the report) and
the data signal’s arrival time (data_arrival_time) is called the slack; i.e., slack = data_required_time
- data_arrival_time. For your circuit to work at the specified cycle time, the clock signal’s rising edge
should always arrive later (or at the same time) than your data signal, which means that your slack should
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be non-negative. In case you have a positive slack for the most critical path, this means that your data
signal could get delayed (i.e., it could slack) for that amount of time, and it would still be sampled correctly
at the flip-flop. Then, in principle, you could reduce the clock period by exactly the slack of the most critical
path, and your circuit would still work. Finally, it is worth mentioning that, in these timing reports, the
tirst path reported is always the critical path!

As you know from class, while we are all excited about the setup checks because they define how fast a
circuit can work, there is another set of (often much more important) conditions that define if our circuit
will work: The hold conditions. In Synopsys DC, you can report these hold conditions with:

report_timing -delay min -max paths 5 > ./reports/timing min.rpt

Note that the -delay min argument is what makes the report contain information about hold times.
Take a look at the generated report and be absolutely sure that all the hold conditions are met. You will
also notice that this hold-check timing report is very similar to the one for the setup checks. The only
difference is that now you want your data to change (data_arrival_time) a hold-time after the clock
signal’s rising edge (data_required_time). Then, for hold checks we want slack = data_arrival_time -
data_required_time (which is the negative of what is used for the setup checks) to be non-negative.

4.2 Area Report

Execute the following command in Synopsys DC:

report_area -hierarchy > ./reports/area.rpt

This will report the total area of your design, as well as an area break-down of each of the contained
modules. Take a look at the generated report in syn/report/area.rpt. As you can see, the report lists
the total combinational, non-combinational, buffer/inverter, and macro (e.g., an SRAM module) areas
separately—it even includes an estimate of the interconnect area! The sum of the first four areas is called
the cell area, while the sum of all listed area values is the total area. Then, the report proceeds to break down
the area for each of the modules in your design (in this case, instances of FF.v and Add.v). Note that the
adder is not even half of the design’s area!

4.3 Power Report

Enter the following command in Synopsys DC to create a power estimate report for your circuit:
report_power -hierarchy > ./reports/power.rpt

Similar to the area report, the -hierarchy flag will break down the power consumption for each
module in the design. Open the report in syn/report/power.rpt. You will see that the report starts by
reporting the operating voltage, as well as the voltage, capacitance, time, and power units. Then, for each
module, the dynamic and leakage power are listed. Note that these two quantities are expressed with
different orders of magnitude (e.g., while the dynamic power is given in uW, the leakage power is in pW).
Also note that the dynamic power is decomposed into two parts: The internal power, which corresponds to
the cells” internal nodes, and the switching power, which happens at the cells” input and output nodes.

As you will learn in class, the power of a circuit depends not only on the node capacitances, supply
voltage, and frequency, but also on the switching activity a. In this case, Synopsys DC is assuming a
switching activity and a static probability (i.e., what is the probability of the signal having a logic 1 value) at
your circuit’s inputs. Using this information, the switching activities for the rest of the circuit are calculated
to generate a power estimate. Alternatively, you could simulate your design to extract the switching
activities at each node, and then use that information in Synopsys DC to get a better power estimate.
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5 Generating a Verilog Gate-Level Netlist with Synopsys DC

Finally, we will get the most valuable output of the synthesis process, which is a gate-level netlist of the
synthesized design. To get this netlist, run the following two commands in the Synopsys DC shell:

change names -rules verilog -hierarchy

write -hierarchy -format verilog -output ./outputs/RegisteredAdd Gate.v

This will create a Verilog file in syn/outputs/RegisteredAdd_Gate.v. Open this file. As you can see,
there is a Verilog module for each different instance of your design modules, plus a top-level module
that corresponds to the Registered_Add module (this one is located at the very end of the Verilog file).
Note how all the circuits are described only in terms of standard cells, such as DFFARX1 (D-flip-flop with
asynchronous reset and a sizing factor of 1) and FADDX1 (full-adder with sizing factor of 1). Since all the
circuit’s description happens at the standard cell (or gate) level, this Verilog file is called a gate-level netlist.

Student Activity 5: Examining the Synthesized Flip-Flop Module

In the gate-level netlist, go to the module that corresponds to a 1-bit flip-flop. Does the syn-
thesized flip-flop implement the functionality described in the FF.v module? To answer this
question, it might be useful to know what each standard-cell name (e.g., FADDX1) corresponds
to, information that you can find in the standard-cell library databook. You can read the data-
book by running the following command in the standard terminal (i.e., not in the Synopsys DC
shell; careful when copying this statement as there are spaces between the lines that should not
be there):

evince /work/global/brg/install/adk-pkgs/saed-90nm/pkgs/SAED_EDK90nm_01252011/
SAED_EDK90nm/Digital_Standard_cell_Library/doc/databook/
SAED_Digital_Standard_Cell_Library_Rev1_11_25.01.2011.pdf &

You can also visualize the gate-level netlist in a graphical way. To do so, start Synopsys DC’s graphical
user interface (GUI) by issuing the following command in the Synopsys DC shell:

start_gui

In the Design Vision window, you will find a “Logical Hierarchy” panel on the left side of the screen.
Click the top-level module to select it. Then, go to “Schematic” — “New Schematic View”. This will open
a new window that contains a block diagram of the top-level module. Double-click on the block to show
its contents. You can double-click again to keep descending in the design hierarchy. Once you reach a
standard-cell and cannot descend anymore, you can right click on the cell and go to “Properties”. In the
new window, search for the “ref_name” field to determine which cell this is.

Student Activity 6: Examining the Synthesized Adder with the GUI

Using Synopsys DC’s GUI, show the schematic for the adder module (without the flip-flops).
Can you tell what type of adder (e.g., carry-select adder, carry-skip adder, carry-save adder, etc.)
this is?

We have finished RTL synthesis with Synopsys DC. Exit Synopsys DC by entering exit in its shell.
The next step of the process will be to take your synthesized Verilog gate-level netlist and use another
CAD tool that will automatically place and route the standard cells according to your gate-level netlist.
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Student Activity 7: “Playing” with the Timing Constraint

Now, apply your synthesis knowledge! Repeat the synthesis process, but this time for two new
clock constraints: One needs to have a clock period of 1.0ns. For the other one, you decide! For
the homework, generate an AT-plot that includes the area and delay for at least three different
clock constraints that you synthesized during this tutorial. In the plot, for the area of each
design, use only the combinational area (exclude the area of the flip-flops). For the timing, do
not use the clock constraints, but the clock constraint minus the slack of the critical path in the
setup check. Do not forget to upload your results to Canvas to complete this homework!
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